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We performed linear and nonlinear elastic wave pulse propagation experi-
ments in sandstone rods, both at ambient conditions and in vacuum. The
purpose of these experiments was to obtain a quantitative measure of the
extremely large nonlinear response found in microcracked (i.e., micro-
inhomogeneous) media like rock. Two rods were used, (1) a 2 m long
5 cm diameter rod of Berea sandstone (with embedded detectors) used in
previously published experiments and (2) a somewhat smaller 1.8 m long
3.8 cm diameter rod. In the earlier experiments, wave scattering from the
embedded detectors was a critical problem. In most of the experiments
reported here, this problem was avoided by mounting accelerometers di-
rectly to the outside surface of the smallest rod. Linear experimental
results show out of vacuum attenuations varied from 1.7 Np/m at 15 kHz
(Q=10) for the large rod to 0.4 Np/m at 15 kHz (Q=55) for the small rod;
attenuations for the small rod in vacuum were much less, typically about
0.15 Np/m at 15 kHz (Q=150). Wave velocities ranged from 1900 m/s to
2600 m/s. The nonlinear results illustrate growth of the second and third
harmonics and accompanying decay of the fundamental. These nonlinear
results compare well with a numerical model. Although the results here
were performed at peak strain amplitudes as low as 5 × 10−7, they still
show the pronounced nonlinearity characteristic of rock, in agreement
with static and resonance studies using the same rock type.

PACS numbers: 43.25.Dc
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INTRODUCTION

The micro-inhomogeneities characteristic of many rocks gives rise to some spec-

tacular nonlinear elastic effects. In previous pulse-mode laboratory experiments,

Meegan et al.1 demonstrated that, under ambient conditions, harmonics of pure tone

signals are generated along the wave propagation path in a Berea sandstone bar at

strain levels as low as 3 × 10−6. The experiments roughly confirmed predictions

from perturbation theory2 that the second harmonic amplitude grows linearly with

propagation distance, with the square of the input frequency, and with the square of

the fundamental amplitude. Resonance experiments conducted with the same rock

type at similar strain levels also show pronounced effects associated with nonlinear-

ity. The frequency at which Young’s mode resonance occurs shifts noticeably with

increasing drive amplitude for many types of rock, including Berea sandstone, and

multiple harmonics are generated.3 Static stress-strain measurements4,5 using Berea

sandstone samples show distinctly nonlinear stress-strain curves as well.

Model studies have been conducted with the solution of the progressive, 1-D

nonlinear elastic equation of motion using an iterative Green function method where

a perturbative solution was found to second order in the nonlinearity.2,6 To compare

with their experiments, however, Meegan et al. used the results only to first order

in the nonlinearity and included visco-elastic, linear attenuation. Recent numerical

simulations by Van Den Abeele7 include nonlinearity to second order and agree with

the experimental observations published by Meegan et al. However, the resonance

and static stress-strain measurements noted in the previous paragraph suggest that

a different model of the nonlinear elasticity inherent in rock samples may be more

appropriate.8 Hysteresis and end point memory appear to be important, even at

the low strain levels of the pulse propagation experiments. Hence, this work was

motivated by a desire to expand on the earlier experimental work and to provide

additional observations in an effort to determine the limits of current analytical

models of nonlinear wave propagation in rock.

I. THEORY

The classical theory of nonlinear wave propagation in elastic solids has been dis-

cussed and presented many times in the literature (see, for example, Refs. 9–11).

To date, most of the theoretical work used to describe nonlinear propagation in

micro-inhomogenous materials such as rock has followed along these lines. We have
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compared calculations from a particular model (theoretical and numerical) developed

by Van Den Abeele6 with some of the experimental results presented in this paper.

The traditional approach of nonlinear elasticity begins with the equation of motion

for propagation in an infinite elastic solid in the absence of dissipation written as

ρ
∂2ui
∂t2

=
∂σij
∂xj

(1)

where ρ is the mass density, ui is the displacement in the xi direction (not the particle

velocity), and σij is the stress tensor. For 1-D motion in thin circular rods, the above

equation simply becomes

ρ
∂2u

∂t2
=
∂σ

∂x
(2)

where the stress σ may be written in terms of the strain ε using a nonlinear version

of Hooke’s law as follows:

σ = Eε [1 + βε + δε2 + · · ·] (3)

where E is Young’s modulus and β and δ are higher order nonlinear coefficients. If

a source function is present, it is usually added to the right hand side of Eq. (2). If

we use Eq. (3) and the fact that the small signal elastic “bar” speed is c0 =
√
E/ρ,

Eq. (2) can be rewritten as
∂2u

∂t2
= c2∂

2u

∂x2
(4)

where

c2 = c2
0 [1 + 2βε + 3δε2 + · · ·] . (5)

One of the original purposes of the experiments discussed in this paper was to ap-

proximate values of β and δ for the sandstone samples available to us.

We should point out that the traditional approaches of Thurston and Shapiro12

and McCall2 (which were adapted and modified by Van Den Abeele6 and others)

yield expressions for 1-D elastic wave propagation in an infinite medium and not a

thin rod. Thus, although their stress-strain relation has the same form as Eq. (3), the

constants are different. E, β, and δ in Eq. (3) replace combinations of the Lamé and

Murnaghan coefficients, λ, µ and l,m, n, respectively. For example, for an infinite

solid, µ(λ + 2µ)/(λ + µ) takes the place of E in Eq. (3). The resulting “bulk” wave

speed c0 is also different for an infinite solid—a well-known result. Thus, some care

is required in comparing values for β and δ measured in a rod or an infinite solid.
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Van Den Abeele’s solution6 is a higher order extension of the Green function

perturbation technique used by McCall2 particularly applied for a pulsed wave with

arbitrary (discrete) Fourier spectrum. This technique was used to solve the wave

equation for 1-D propagation in an infinite elastic medium. McCall’s approach is

especially useful as it allows the flexibility of prescribing any source function. Because

the solution is a perturbation result, it is valid only for small distances from the

source. To allow large propagation distances, Van Den Abeele adapted an iterative

approach similar to Haran and Cook13 by dividing the propagation path into several

small sections and using the output spectrum from one section as the input source

function for the next section. Moreover, linear attenuation can be added ad hoc at

the end of each step in a manner similar to that used by Pestorius and Blackstock.14

II. EXPERIMENTAL ARRANGEMENT

The pulse propagation measurements reported here were made using two nearly

homogeneous but anisotropic rods of Berea sandstone (Cleveland Quarries, Amherst,

Ohio). The first rod is a 2 m long, 6 cm diameter rod used by Meegan et al. This bar

has detectors (Valpey-Fisher pinducers, part VP-1093) epoxied inside the rod within

small boreholes drilled at 45◦ angles at various points along the rod axis. The second

rod is similar although somewhat shorter and smaller, 1.8 m long and 3.8 cm in diam-

eter and not tapered at the end. In order to reduce scattering effects, we chose not to

drill holes in this second rod. Instead of pinducers, several B&K 8309 accelerometers

were mounted directly to the outside of the rock (using a cyanoacrylate glue and an

activator), each oriented along the axial direction. Gluing the accelerometers onto

the rod also allows flexibility in receiver spacing. A PZT-4A piezoelectric disk and

tantalum inertial backload were epoxied onto the end of the rod as a source, as in

the configuration used by Meegan et al. Because the opposite end of the rod was not

tapered, care was taken so that pulses that propagated along the smaller bar were

short enough that reflections from the far end never interfered.

The electronics attached to the source and receivers are depicted in Fig. 1. An

Analogic 2020 arbitrary function generator was the signal source. It was programmed

to repeatedly output a tone burst with a gaussian-shaped envelope. The output of

the 2020 was fed into a Hafler Pro5000 audio amplifier connected to the piezoelectric

disk via a transformer. The transformer was essential because the Hafler will not

drive a purely capacitive load. Nonlinearity of the transformer was not a problem;

measurements of the spectra of the electronic signals going into the source at all drive
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levels showed that the harmonics of the drive frequency were all more than 55 dB

below the fundamental. For both bars, the output of each detector was fed into a

B&K 2635 Charge Amp and then on to a LeCroy 9420 Digitizing Oscilloscope or to

an Analogic 652/6100B Waveform Analyzer. Signal-to-noise ratios were improved by

repeating the tone burst several times and using standard linear averaging techniques.

We should point out that Meegan et al. connected the output of each pinducer to a

voltage preamplifier by way of a calibrated cable; we chose to use a charge amplifier

and not worry about cable loading effects.15

The choice of source frequencies was limited by the length of the bar and by the

possibility of exciting unwanted higher order modes. 1-D elastic wave propagation is

easiest to treat theoretically so we attempted to excite only the lowest order longitudi-

nal mode in the bar. Propagation speed of this lowest longitudinal mode (or Young’s

mode) is about 1900 m/s for the smaller sample—somewhat higher in vacuum—and

about 2600 m/s for the larger rod. Thus, to obtain enough cycles to analyze before

the arrival of the reflected pulse, we limited the lowest source frequency to about

10 kHz. Accelerometer bandwidth and the possibility of exciting higher order modes

limited the highest source frequencies. Although the lowest order torsional mode

propagates at any frequency (as well as a host of flexural modes), higher order modes

do not propagate below their cutoff frequencies. These frequencies were calculated

from the rod geometry and the bar and shear wave speeds for both rods.16 We found

that for the smaller rod, the next higher longitudinal and torsional modes can propa-

gate if their frequencies are greater than about 35 kHz and 55 kHz, respectively. For

the larger rod these frequencies are somewhat lower, 28 kHz and 44 kHz. In addition,

there is one more limit to the highest source frequency: although the accelerometers

have a mounted resonance frequency of 180 kHz, B&K specifications indicate their

response is flat (magnitude and phase) only to 54 kHz. The B&K charge amplifiers

connected to the accelerometers have a known flat amplitude response to 100 kHz

and flat phase response to about 25 kHz. Beyond 25 kHz, the phase shifts upward

very slowly, to nearly 30◦ at 100 kHz. Imperfect accelerometer mounting will lower

all these frequencies. Thus, to obtain an accurate measurement of the harmonics and

still avoid exciting higher order modes, source frequencies were kept below 20 kHz.

III. LINEAR MEASUREMENTS

Several measurements of linear elastic wave propagation in each of the sandstone

bars were made. The purpose of these measurements was twofold. First, an extensive
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comparison between theoretical elastic wave propagation in a sandstone rod and the

actual, observed wave propagation has not been reported. Second, linear attenuation

and wave speeds were required in model calculations. Most of these measurements

were conducted with the small bar because Meegan et al. had already conducted

many linear measurements in the larger bar.

During the initial measurements with the small rod, we (re)discovered something

known to Rayleigh, “The difficulty of exciting purely longitudinal vibrations in a bar

is similar to that of getting a string to vibrate in one plane.”17 As already noted, the

source frequencies used for these experiments permit propagation of both the lowest

order longitudinal and torsional modes as well as a host of flexural modes. Although

flexural modes are possible, they typically propagate with very slow speeds, are

dispersive, and thus can be distinguished from other modes. Although our source

condition does not favor torsional mode excitation, we nevertheless found that certain

source frequencies do, in fact, readily excite a strong mode that propagates at the

torsional (shear) velocity and exhibits a twisting motion associated with the lowest

order torsional mode (see [18] for similar experimental results).

Figure 2 shows examples of tone bursts recorded in both the small, (a) and (c),

and large (b) bar. Figure 2(a) shows a 1 ms long tone burst detected 85 cm from

the source. Compare this waveform with Fig. 2(b), a tone burst detected in the

larger bar 38 cm from the source. The tone burst in the larger bar is much cleaner,

perhaps because the detectors were not mounted on the surface but located near the

center of the rod where torsional motion does not (theoretically) exist. A shorter

tone burst (0.3 ms long) detected at 60 cm in the smaller bar, Fig. 2(c), illustrates

an arrival which is apparently the lowest torsional mode. The wave traveled with

the shear wave velocity, was nondispersive, and, when another accelerometer was

surface-mounted perpendicular to the original orientation, exhibited a strong twisting

motion characteristic of the torsional mode. We attempted to avoid frequencies that

generated torsional modes for all the experiments reported here.

The accelerometer orientation also posed some interesting measurement problems.

Each accelerometer has a transverse sensitivity that is usually negligible. However,

near the transverse resonance frequency and with the proper orientation, the mea-

sured transverse acceleration can be fairly large. For the B&K 8309s, the transverse

sensitivity is a maximum at 28 kHz, very near the second harmonic in many of our

experiments. We tried mounting the accelerometers with orientations in two dif-

ferent ways, to maximize or minimize the transverse response. The purpose of the
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first orientation was to see how much torsional mode (twisting motion) was present;

the purpose of the second orientation was to decouple the torsional mode from the

longitudinal mode signal. As noted above, problems with unwanted torsional modes

affecting the received signals are minimal with the detectors imbedded in the larger

bar.

Measurements of both wave speed and attenuation are illustrated in the next

group of figures. Figure 3 shows a typical range stack from several accelerometers

mounted on the small bar. Note the clean waveforms at this frequency; torsional or

flexural modes are not evident. As the figure shows, it is easy to follow a particular

piece of the tone burst waveform and determine wave speed from the slope. The

wave speed for the larger bar agrees well with the value of Meegan et al. (2700 m/s).

We should also note that wave speeds did vary somewhat from day to day depending

on ambient temperature, pressure, and humidity. The in-vacuum measurements, on

the other hand, varied much less. Wave speeds for the smaller bar were 1950 m/s

and 2100 m/s out and in vacuum, respectively.

An attenuation measurement for the smaller bar was not straightforward. The

simplest technique—plotting the wave amplitude as a function of distance—did not

work because site effects at each detector make determination of the decay uncertain.

(Site effects are discussed in the Appendix.) Instead, we used a 0.5 ms long tone burst

and recorded the original toneburst and five of its successive reflections from both

ends of the rod. This was done at three separate accelerometer positions. Results

for the small rod in vacuum are plotted in Fig. 4. Because a single accelerometer is

used for each of the three data sets shown, site response is irrelevant. The average

value of the attenuation α for the small bar in vacuum at 15 kHz was 0.16 Np/m

(± 0.02 Np/m). The equivalent average value for QE = πf/(αv)—where QE is the

extensional quality factor and v is the velocity of the Young’s mode19—is 143 (±
10). The solid vertical lines in the figure represent places where the tone burst is

reflected from the source end. Data points taken after that reflection are expected

to have additional energy loss because the reflected and incident pulse overlap and

the exact nature of the reflection at the source end is not known. Indeed, the value

of the attenuation taking the average value of the slope of only the first two data

points is somewhat smaller, 0.13 Np/m (QE ≈ 180). A similar experiment done at

the same frequency with the rod out of vacuum yielded an attenuation of 0.4 Np/m

(QE = 55). For the larger bar the attenuation out of vacuum has been measured to

be much higher due to wave scattering from the imbedded pinducers; Meegan et al.
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report a Q=10 which corresponds to α = 1.7 Np/m at 15 kHz.

The linear experiments also revealed that the lowest longitudinal mode does not

develop immediately after it is emitted by the source. Several B&K 4374 accelerome-

ters were mounted within 20 cm of the source oriented to measure the radial accelera-

tion along the rod since Young’s mode is frequently described as a “snake swallowing”

motion. Figure 5 shows the results. It is apparent that there is much less radial mo-

tion near the source than farther down the rod. Generally, we found that it was not

until the wave had propagated a distance of about one to two wavelengths that the

axial and concommitant radial motions that characterize Young’s mode were present.

Therefore, all measurements on the small rod were made at a distance greater than

20 cm from the source where a fully developed Young’s mode was evident. To our

knowledge, the development of Young’s mode shown here has not been discussed

elsewhere in the literature.

IV. NONLINEAR MEASUREMENTS

As a starting point we repeated some of the experiments conducted by Meegan

et al. We chose to use a B&K 8309 accelerometer glued to the backload instead of

the optical probe previously used; the accelerometers are far less noisy and are more

sensitive in general. We assumed thoughout these experiments that the accelerometer

gave an accurate representation of the relative spectrum of the source acceleration.

Absolute source spectrum values, where required, were estimated. Figure 6 shows

a typical source spectrum obtained at the backload for a high source strain level.

It is rich in harmonics. Because Meegan et al. had an exceptionally clean source

signal (see their Fig 3),1 we presume that the bond between transducer and rock had

degraded since the earlier work. Such a rich source spectrum had an unexpected

effect on the results; harmonics at the source tended to mask whatever nonlinear

effects we might have seen. In fact, the presence of source harmonics changed the

experimental results dramatically (which will be discussed subsequently).

If the spectrum at the backload is taken as the source function for Van Den Abeele’s7

numerical method and β, δ, and QE are chosen to be 500, 1×107, and 10, respectively,

we can make the comparison shown in Fig. 7. Predicted theoretical spectral levels

at each harmonic are indicated with circles, and the measured spectra are shown as

solid lines. Two things should be noted. As we commented earlier, source harmonics

masked nonlinear effects, i.e., the values of β and δ chosen above were small enough

that they had no effect on the model calculations.20 Second, measured peak values
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at the various harmonics seen in the figure fluctuate around the predicted level. This

behavior illustrates the problem of site response. Our solution to the site response

problem is discussed in detail in the Appendix.

Rather than repeating more experiments on the large bar or remounting the

source, we performed additional experiments on a somewhat smaller sample. The

same source configuration was used on the small bar as on the larger bar. Unfor-

tunately, we were unable to produce a clean, relatively monotonal source pulse like

that shown by Meegan et al. However, certain source frequencies proved to be better

choices than others. Figure 8 shows a typical spectrum from a 12.4 kHz source ob-

tained from a B&K 4374 accelerometer mounted on the Ta backload with the bar in

air. It should be noted that the resonance frequency of the B&K 4374 accelerometer

is somewhat lower than the accelerometers normally used (B&K 8309) so the up-

per frequency end of the spectrum—from about 40 kHz on—is somewhat enhanced.

However, we were interested only in the behavior of the 2nd and 3rd harmonics,

which were safely in the lower end of the spectrum. Maximum source levels were

estimated to be about 10 dB lower than the maximum levels reported by Meegan

et al.; peak strain amplitudes are about 5 × 10−7. The second harmonic shown in

this figure is about 10 dB lower than the fundamental; on the other hand, the 3rd

harmonic at 37.2 kHz is much lower and is, in fact, hard to identify. The peak at

40 kHz (which is not a multiple of the source frequency) may be due to resonance of

the PZT disk which has a designed center frequency of 40 kHz. Spectra taken at the

backload in vacuum were similar although 2nd and 3rd harmonic levels were usually

higher than the out-of-vacuum spectra.

Spectral ratios as a function of distance at various source frequencies were ob-

tained with the small rod in vacuum. In all cases, backload source spectra indicated

a distorted source and were similar to the spectrum shown in Fig. 8. Figures 9(a) and

(b) show plots of fundamental, second, and third harmonic spectral ratios (denoted

R1, R2, and R3.) versus distance for drive frequencies of 13 kHz and 14 kHz, respec-

tively. In both cases the 2nd harmonic at the source was only about 5 dB lower than

the fundamental. The 3rd harmonic at the source, however, was very low and, in

fact, hard to identify at 13 kHz (39 kHz). Both figures show a second harmonic that

does not grow or grows just slightly (b). This is not an unexpected result consider-

ing the large 2nd harmonic in the source spectrum.6 Both figures do, however, show

strong 3rd harmonic growth with distance. For completeness, the spectral ratios for

the fundamental are also shown in both plots; in both cases the lines are nearly flat.
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This behavior also is expected based on simulations. Other in-vacuum results are

similar to those shown here.

Finally, we made measurements of the spectral ratios as a function of distance for

the 2nd and 3rd harmonics out of vacuum. Source spectra were typically cleaner than

those taken with the bar in vacuum. Fig. 10(a) shows a plot of spectral ratios obtained

with the source spectrum shown in Fig. 8. Spectral ratios for the second and third

harmonic are denoted R2 and R3. The two lines (least squares fits) are shown to guide

the eye and do not necessarily represent the true functional dependence of spectral

ratio on distance. The errors in the method and sparseness of data do not allow

us to deduce the exact functional forms. However, the error bars are significantly

smaller than the spread in each case and both harmonics are growing with distance.

Fig. 10(b) shows a simulation of the experiment using the numerical model with values

of β, δ, and QE of 400, 2 × 108, and 55, respectively. The results are very similar,

especially considering the uncertainties in (1) determining the true source function

and (2) exciting pure small signal waves at the second and third harmonic frequencies

and determining source levels. Although we believe other nonlinear effects must be

accounted for in the model, these results clearly show that the nonlinearity inherent

in rocks manifests itself at levels even lower than initially reported by Meegan et al.

V. SUMMARY AND CONCLUSIONS

The results of several experiments examining linear and nonlinear wave propaga-

tion in two Berea sandstone rods have been reported and compared with a numerical

model. Small amplitude wave speeds were measured in both samples, both in and out

of vacuum and found to range from 2600 m/s to 1900 m/s. Small signal attenuation

was also measured and varied considerably, depending on whether the sandstone bar

was inside or out of vacuum. Values of QE ranged from 10 (large sample in air) to

150 (small sample in vacuum). Measurements were made of higher strain amplitude

waves too. Nonlinearity is clearly evident in our measurements. Most of the new

measurements were obtained using a smaller, thinner rod than the study by Meegan

et al.1 and, since the detectors were surface mounted, wave scattering was not a prob-

lem. Remarkably, propagation of waves with peak strain levels of only 5×10−7 clearly

show the effects of nonlinearity (10 dB lower than levels used in Meegan et al.). The

results also clearly show both 2nd and 3rd harmonic growth. A numerical algorithm6

which includes second order nonlinear constants in the equation of state was used

to compare with the data presented here and the results are very good. The data
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presented here nicely complement and greatly add to the data presented by Meegan

et al.

Comparison of measurements and calculations, however, strongly suggest that

the current theory is incomplete.7 Moreover, considerable evidence from resonance

and static stress-strain studies on similar materials suggests that hysteresis and end

point memory3,5 likely play prominent roles in wave propagation in earth materials

such as rock. Some preliminary numerical work by Van Den Abeele23 is promising.

He has added hysteresis in his model and has shown that harmonics at levels we have

observed in these measurements can easily be generated without requiring large δ’s.

Work is continuing along these lines.
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APPENDIX. SITE RESPONSE AND SPECTRAL RATIOS

Measurements with earth materials are typically much more difficult than those

conducted in air or water. Site response, the variation in signal intensity due to local

inhomogeneity and detector coupling, is a well-known problem in seismology, and

laboratory experiments on solids share some of the same difficulties. In seismology,

the observed spectrum at a ground location is often expressed as the true source

spectrum (at depth) passed through a series of linear filters. Filters that are often

used include instrument response, propagation path response, geometric spreading,

source radiation response, etc.22 In our 1-D rod experiments we need only correct for

source, instrument, and path response (including attenuation, nonlinear response,

etc...). Attenuation along the propagation path is relatively easy to determine. How-

ever, accelerometer site response is not. Ideally, if the mounting is perfect, the B&K

accelerometers have a flat response to 54 kHz. However, a perfect mounting is rarely

possible, especially on porous sandstone rods. Imperfect mounting will lower the

resonance frequency and alter the expected accelerometer frequency response. More-

over, the rod itself is anisotropic and not perfectly homogenous so different mounting
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points will yield slightly different accelerations. The problem is even more trouble-

some with the pinducers as they are not calibrated.21 Figure 7 shows the effects of

site response; variations of the spectra from site to site are obvious at any frequency.

A widely applied method used for eliminating site response in seismology is the

method of spectral ratios. In earthquake studies for example, the effects of wave

travel paths, attenuation, and seismometer variations can be cancelled by taking the

ratio of a large earthquake spectrum to a much smaller earthquake spectrum from

the same source location.22 We have adapted the technique to eliminate the site

response problem in our laboratory experiments as follows. Assume for simplicity

that we have a source whose spectrum consists of a single line at frequency f1, i.e.,

a monotonal source. The measured small-strain spectral level for this line M(f1, xi)

from an accelerometer at a distance xi from the source can be represented as the

source spectrum S(f1) passed through two linear filters:

M (f1, xi) = A(f1, xi) ·Ψ(f1, xi) · S(f1) (A1)

where A(f1, xi) is the filter representing the attenuation evaluated at f1 and Ψ(f1, xi)

is the filter representing the detector site response evaluated at f1. If we supply a

second monotonal source spectrum S′—at the same frequency but at a different

small-strain amplitude—the same filters apply and the ratio of the two measured

spectral lines is simply

R(f1) =
M ′(f1, xi)

M(f1, xi)
=
S ′(f1)

S(f1)
. (A2)

In this case (two linear source functions), R is a constant for all positions xi.

Application of the spectral ratio method to a large amplitude (i.e., nonlinear) and

small elastic wave signal requires some modification. We therefore use a hybrid ap-

proach. Assume we excite a large amplitude single source frequency SN(f1) and mea-

sure the resulting nonlinear wave spectrum (rich in harmonics) M(nf1, xi)|n=1,2,3,···

at a distance xi from the source. Instead of exciting only a low amplitude wave at

f1, we also separately excite and measure small amplitude waves at 2f1, 3f1, etc. We

then take the ratio of the appropriate spectral line in the nonlinear signal to each of

the small amplitude harmonics. The measured levels for each of the low amplitude

signals, given the source functions S(nf1) are

M(nf1, xi) = A(nf1, xi) ·Ψ(nf1, xi) · S(nf1) n = 1, 2, 3, · · · (A3)
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and the measured levels in the nonlinear spectrum given the source function SN (f1)

are

MN(nf1, xi) = AN(nf1, xi) ·Ψ(nf1, xi) · SN(f1) . (A4)

Note that we assume site response Ψ is independent of amplitude. The ratio of

the measured large amplitude signal driven at f1 at the nth harmonic to the low

amplitude signal driven at nf1 is

Rn =
MN (nf1, xi)

M(nf1, xi)
=

AN(nf1, xi)

A(nf1, xi)

[
SN(f1)

S(nf1)

]
(A5)

The site response Ψ is again eliminated and the source ratio is a constant. The

new attenuation “filter” response AN now contains the nonlinear propagation effects

(e.g., decay of the fundamental or growth of a harmonic). For the harmonics above

the fundamental, for example, the ratio ANL(nf1, xi)/A(nf1, xi) should increase with

distance if the rod responds nonlinearly. This method appears to work very well in

the case of a source that does not emit harmonics. Indeed, Meegan et al. successfully

applied this formulation to plot the ratio R2 as a function of distance. If nonlin-

earity in the material had not been present, the ratio would have been constant for

all pinducer positions. What Meegan et al. found, however, was that the value of

the spectral ratio appeared to grow linearly with x, exactly what classical theory

predicted, a convincing show of nonlinear response in the material.

A cautionary note: if the source emits harmonics, problems are introduced into

the method. A rich source spectrum translates to a redistribution of energy within

the wave spectrum along the path in a complex manner because interactions between

all frequencies begins immediately. See Van Den Abeele6 for more discussion on

contaminated sources and their effects on the simple harmonic relationships.

REFERENCES

1G.D. Meegan, Jr., P.A. Johnson, R.A. Guyer, and K.R. McCall, “Observations of

nonlinear elastic wave behavior in sandstone,” J. Acoust. Soc. Am. 86, 2309–2317

(1989).

2K.R. McCall, “Theoretical study of nonlinear elastic wave propagation,”

J. Geoph. Res. 99, 2591–2600 (1994).

13



J. Acoust. Soc. Am. TenCate, Van Den Abeele, Shankland, Johnson

3P.A. Johnson and P.N.J. Rasolofosaon, “Manifestation of nonlinear elasticity in

rock: Convincing evidence over large frequency and strain intervals from labora-

tory studies,” Nonlinear Geophysics, 1995 (in review).

4L.B. Hilbert, Jr., T.K. Hwong, N.G.W. Cook, K.T. Nihei, and L.R. Myer, “Ef-

fects of strain amplitude on the static and dynamic nonlinear deformation of

Berea sandstone,” Rock Mechanics Models and Measurements: Challenges from

Industry, P.P. Nelson and S.E. Laubach, eds., (A.A. Balkema, Rotterdam, 1994)

497–504.

5R.A. Guyer, K.R. McCall, and G.N. Boitnott, “Hysteresis, discrete memory and

nonlinear wave propagation in rock,” Phys. Rev. Lett., 74, 3491–3494 (1995).

6Koen E-A Van Den Abeele, “Elastic pulsed wave propagation in media with

second or higher order nonlinearity. Part I: Theoretical framework” submitted to

J. Acoust. Soc. Am., May 1995.

7Koen E-A Van Den Abeele, “Elastic pulsed wave propagation in media with

second or higher order nonlinearity. Part II: Simulation of experimental measure-

ments on Berea sandstone” submitted to J. Acoust. Soc. Am., May 1995.

8K.R. McCall and R.A. Guyer, “Equation of state and wave propagation in hys-

teretic nonlinear elastic materials,” J. Geoph. Res. 99, 23887–23897 (1994).

9L.D. Landau and E.M. Lifshitz, Theory of Elasticity, 3rd ed., (Pergamon, New

York, 1959).

10F.D. Murnaghan, Finite Deformation of an Elastic Solid, (John Wiley & Sons,

New York, 1951).

11A.L. Polyakova, “Nonlinear effects in a solid,” Sov. Phys. Solid State, 6, 50-54

(1964).

12R.N. Thurston and M.J. Shapiro, “Interpretation of ultrasonic experiments on

finite-amplitude waves,” J. Acoust. Soc. Am. 41, 1112–1125 (1967).

13M.E. Haran and B.D. Cook, “Distortion of finite amplitude ultrasound in lossy

media,” J. Acoust. Soc. Am. 73, 774–779 (1983).

14



J. Acoust. Soc. Am. TenCate, Van Den Abeele, Shankland, Johnson

14F.M. Pestorius and D.T. Blackstock, “Propagation of finite-amplitude noise,”

Finite-Amplitude Wave Effects in Fluids, Proceedings of the 1973 Symposium,

Copenhagen, Denmark, ed. L. Bjørno, (IPC Science and Technology Press, Surrey,

England, 1974).

15M. Serridge and T.R. Licht, Piezoelectric Accelerometers and Vibration Pream-

plifiers. Theory and Application Handbook, (Brüel & Kjær, Glostrup, Denmark,
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Figure Captions

1. Experimental Setup: Block diagram shows source drivers and one detector

channel.

2. Typical received tone bursts. Top waveform (a) was obtained from an ac-

celerometer on the surface of the small bar, 85 cm from the source with a

source frequency of 15 kHz and a 1 ms long tone burst. Middle waveform (b)

was obtained from a pinducer in the large bar, 38 cm from the source with a

source frequency of 14 kHz and a 1 ms tone burst. Bottom waveform (c) was

obtained from an accelerometer on the surface of the small bar, 60 cm from

the source with a source frequency 19 kHz and a 0.3 ms tone burst. Time axes

of the top two plots have been shifted in order to show all tone bursts on the

same scale.

3. Typical rangestack used to calculate pulse propagation speed. Data taken from

accelerometers on small bar, under vacuum (≤20 mTorr) with 0.5 ms tone

bursts at 15 kHz source frequency. Each waveform amplitude has been normal-

ized. Dashed line tracks the first arrival of the tone burst and the dot-dashed

line tracks its reflection from the far end of the bar.

4. Peak acceleration values for an initial tone burst and its five later (multiple

reflection) arrivals. Squares represent data taken at an accelerometer 28 cm

from the source, circles 35 cm from the source, and diamonds 50 cm from the

source. Solid, dotted, and dash-dotted lines represent least squares fits to each

position, respectively. Vertical lines at 3.6 m and 7.2 m represent points where

the tone burst is reflected from the source end.

5. Output of several accelerometers (oriented to be sensitive to radial r motion)

mounted near the source operating at 12 kHz on the small bar. Different

symbols indicate different runs.

6. Spectrum (magnitude) of a large amplitude source signal taken from a B&K 8309

accelerometer mounted on the rear face of the Ta backload. Driving frequency

was 13.75 kHz.

7. Model calculations (circles) and measured acceleration spectra (solid lines) for

an intense tone burst travelling down the large sandstone rod. Order of spectra
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is left to right, the upper left hand corner corresponding to the spectrum taken

2.5 cm from the source. Pinducers are separated by 5 cm thereafter.

8. Source spectrum taken at the source backload of the small bar in air with a

B&K 4374 accelerometer. Driving frequency was 12.4 kHz.

9. Spectral ratios as a function of propagation distance for fundamental (circles),

2nd (squares), and 3rd (triangles) harmonics. Source frequencies were (a)

12 kHz and (b) 13 kHz, and source strain amplitude estimated at 3 × 107.

All data were taken with the rod in a vacuum of at least 10 mTorr.

10. (a) Spectral ratios as a function of propagation distance for 2nd (squares) and

3rd (triangles) harmonics. Source frequency was 12.4 kHz, source strain am-

plitude estimated at 2 × 107. Bar was in air. Lines are least squares fits to

guide the eye. (b) Calculated spectral ratios for values of β, δ, and QE of 400,

2× 108, and 55, respectively.
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